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Introduction

Grx2 (encoded by the grxB gene) representing up to 1 % of total soluble protein in the stationary phase of growth, contributes to the
protection of cells against oxidative stress induced by H,O, !. Grx3 (grxC gene) with 0.4 % of total soluble protein may reduce
ribonucleotide reductase in vitro. Both Grx2 and 3 participate in thiol-disulfide exchange but their biological role remains unknown.
Proteins essential for survival of the Gram-negative pathogen Escherichia coli, may represent novel targets for multitargeting antibiotics?.
We have shown that both glutaredoxins (monothiol trapping mechanism’) may interact with essential for survival proteins, whose levels
were also altered in null mutants for grxB and grxC. In this work, we examined the interactions of the two glutaredoxins and the essential
proteins.

Methodology

The protein ligands of E. coli Grx2 and Grx3 were identified by affinity chromatography experiments using as bits monothiol grxs. Cellular lysates corresponded to cells grown to LB medium
(exponential and stationary phase). Cell lysates were prepared and chromatographed through columns with of the immobilized Grx2 and Grx3 mutants. Columns with uncoupled resin served
as control. Bound proteins were eluted with salt (KCl, step gradients), CH;COOH/HCOOH pH 2,1 and finally DTT. All experiments were performed 1in triplicates. Furthermore, the whole
proteomes of E. coli wild type and the null mutant for grxB and grxC were compared for cells grown in LB (exponential and stationary growth phase). All proteomic analyses were performed
by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) followed by bioinformatics and gene ontology evaluations.

Results

Figure 1. Heatmaps of the statistically significant proteins, derived from affinity chromatography (DTT and acidic elutions),
Grx3 exponential (left) and stationary (right) phase.

performed in Perseus.
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Figure 2. Heatmaps of the statistically significant proteins, derived from affinity chromatography (DTT and acidic elutions), performed in Perseus.
Grx2 exponential (left) and stationary (right) phase.
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Figure 3. Gene Ontology annotation of the statistically significant proteins, derived from grxC null mutant whole proteom analysis, performed in GeneCodis 4. Ontologies were retrieved
from the databases Biological process and Molecular function. Up- regulated (a) and Down- regulated (b) proteins compared to wild-type in exponential growth phase. Up- regulated (¢) and
Down- regulated (d) proteins compared to wild-type in stationary growth phase.
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Figure 4. Gene Ontology annotation of the statistically significant proteins, derived from grxB null mutant whole proteom analysis, performed in GeneCodis 4. Ontologies were retrieved
from the databases Biological process and Molecular function. Up- regulated (a) and Down- regulated (b) proteins compared to wild-type in exponential growth phase. Up- regulated (c) and
Down- regulated (d) proteins compared to wild-type in stationary growth phase.

Genes -log10(Pval Adj)  Number of genes
Genes -log10(Pval Adj) Number of genes Genes -log10(Pval Adj) Number of genes Genes -log10(Pval Adj) Number of genes d
a 0141 b 0197 5 c 0191 dor rbfA O 132 2
Annotati o 147 ! Annotations D2E) . 0538 & . . L . Annotations (3135 035 : ispB
UELE o3 @10 muB  regulation of cell shape Annotations ®13 ribosomaismall subunit biogenesis ispG
. . murC - . nusG ribosome Biggenesis . isoprenoid biosynthetic process
ispE
murF murG q q q . IspA
peptidoglycan biosynthetﬁ:apr)?gh S&ﬁ%e derivative biosynthetic process ribosomal small subunit assembly
glmM gimM rpsD estA e
ligA rpsJ
] ) ) holB rpsQ
mure  Peptidoglycan biosynthetic prpcess holA DNA replication feglheton oframgon
L gluconeogenesis o Ik . e
lt = ’ DNA biosynthetic process . translation aen ribosomal small subunit assembly
. . T mC . . . . . 3 .
pgk fatty acid biosynthetic process DNA-templated DNA replication P o0 et s ribosomal small subunit biogenesis sister chromatid cohesion
dnaX
. rpsD
v
infB rp acpP — dnaE rplF nfA rpsN fosU mukB
glyA priB aspS pss
rpsB frr ol PSK psT rpsQ ybeY
lycine biosynthetic process from serine A infA
gly Y Y P tidnslation, qyq alys sk i slation rpsM
rpIN rpsl “ﬂlc trangfafion,  aas
aspS
def W, rpmH .
rpoA plasmid partitioning gitx rpm,f_p BN infC gimu
e parE o PP rpsR IoxD
m isab) secA rpmt, pie B tyrS
; : A : il i izati rotein targeting to membrane 17/ pIX P lipid A biosynthetic process
tRNA N1-guanine methylation |ﬂracellusll% o &8 | mﬁ?ﬂb‘%?%g tion par ~ chromosome organization P geting glnM A .

DNA-templated transcription initiation

rpoB

positive regulation of helicase activity
ssb

positive regulation of catalytic activity

DNA topelogical change
gyrA

fbaA

. gapA
aceF glycolytlcgp?ocess

pgk

ftsY

peptidoglycan biosynthetic process

mur|
gimu

mreB
murF

ispU

fabZ
acpP

fatty acid biosynthetic process
fabH

fabl fabD

Figure 2. Gene Ontology annotation of the statistically significant proteins, derived from affinity chromatography (DTT and acidic elutions), performed in GeneCodis4. Ontologies were retrieved from the databases Biological process and Molecular function. Grx2 exponential (a) and stationary (b) phase and Grx3 exponential (c) and stationary

(d) phase.
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biosynthesis and translation.
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regulation of sister chromatin cohesion.
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Conclusions

» Affinity chromatography experiments revealed that Grx2 interacted with 65 essential for survival proteins involved in biofilm formation, cell motility, peptidoglycan
» (Grx3, in affinity chromatography results, interacted with 125 essential for survival proteins that participate in translation, ribosome biogenesis, DNA replication and

*  Whole proteome analysis showed that the levels of 92 essential proteins were altered between the wild type and null mutants for grxB~. Changes in protein levels (down

regulation in grxB null mutant) were mostly observed in the stationary phase of growth and involved proteins related to the regulation of DNA replication initiation,
detection of UV, lipoprotein biosynthesis, translation and protein folding.
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*  Whole proteome analysis showed that the levels of 160 essential proteins were altered between the wild type and null mutants for grxB~. Changes in protein levels (down

regulation in grxB null mutant) were mostly observed in the exponential phase of growth and involved proteins related to the translation, ribosome assembly, chemotaxis,
lipopolysaccharide biosynthesis and metabolic processes.
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* These findings highlight the multifunctional roles of Grx2 and Grx3 and provide insights into potential targets for antibacterial strategies.
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