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Introduction. Glutaredoxin 2 (Grx2) contributes more that 80 % of glutathione (GSH) mediated redox activity in cellular extracts and protects cells from general J s

oxidative damage (formation of carbonyls!?). The specific substrates of Grx2 however, are unknown. To this aim, immobilized monothiol/athiol Grx2 mutants
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were used 1n affinity chromatography with cellular lysates from Escherichia coli (E. coli). The athiol Grx2 (Grx2 C9S C125) served as a bait for proteins
interacting in a non-thiol manner while the monothiol Grx2 C12S was used to trap dithiol substrates of Grx2. In addition, lysates from £. coli null mutants for G2

grxB, encoding Grx2, were compared to those of the wild type. All proteomic analyses were performed by Liquid Chromatography-Tandem Mass Spectrometry

(LC-MS/MS) followed by bioinformatics and gene ontology evaluations.

Methodology. Overexpression and purification of E. coli Grx2 C9S CI12S and Grx2 C12S mutants. Each protein (approximately 6 mg) was immobilized on Affi-
Gel 10 beads in chromatographic columns. E. coli cells were grown in LB-medium and collected during both exponential and
prepared and chromatographed through columns with of the immobilized Grx2 mutants. Empty resin served as control. Bound
step gradients), CH3COOH/HCOOH and finally DTT. The eluted proteins were analyzed by LC-MS/MS. All cromatogra;

Furthermore, E. coli wild type strain and the null mutant for grxB were grown and harvested in both growth phases. Their proteome was analyzed by LC-MS/MS.
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Figure 1. Catalytic mechanism and monothiol Grx substrate trap.
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Figure 2 Gene Ontology annotation of the statistically significant proteins, derived from affinity chromatography, performed in GeneCodis4. Ontologies were retrieved from the databases Biological process and Molecular function. Exponential phase acidic
elution (a) and DTT elution (b). Stationary phase acidic elution (¢) and DTT elution (d).
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Table 1. Top 50 potential interactors of each growth phase, in acidic and DTT elutions, were selected for docking experiments.

Docking simulation
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52%
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84%
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72%
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58% agreement 1n
exponential phase

68% agreement in
stationary phase

Total 63% agreement
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Figure 4. Gene Ontology annotation of the statistically significant proteins, derived from grxC null mutant whole proteom analysis, performed in
GeneCodis 4. Ontologies were retrieved from the databases Biological process and Molecular function. Up- regulated (up) and Down- regulated (down)

proteins compared to wild-type in stationary growth phase.

Figure 3. Gene Ontology annotation of the statistically significant proteins, derived from grxC
null mutant whole proteom analysis, performed in GeneCodis 4. Ontologies were retrieved
from the databases Biological process and Molecular function. Up- regulated (up) and Down-
regulated (down) proteins compared to wild-type in exponential growth phase.

Conclusions

1. Affinity chromatography experiments revealed that Grx2-interacting proteins may be involved tricarboxylic acid cycle, respose to oxidative stress,
peptidoglycane biosynthesis, iron-sulfur cluster assembly and regulation of cell cycle.

2. grxB -wild type whole proteome comparisons showed significant changes in the levels of proteins involved 1n anaerobic respiration, tRNA processing,
iron 10n homeostasis, protein folding and chemotaxis.

3. Grx2 appears as a multifunctional protein involved in many more biological pathways than i1ts known general antioxidant function.
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